内容发布更新时间 : 2025/6/22 23:58:17星期一 下面是文章的全部内容请认真阅读。
26
工程数学 概率统计简明教程(第二版)
0.99置信区间.
10. 为了比较甲、乙两种显像管的使用寿命X和Y(单位:104h),随机地抽取甲、乙两种显像管各10只,得数据x1,?,x10和y1,?,y10且由此算得
x?2.33,y?0.75,?(xi?x)?27.5,?(yi?y)2?19.2.
2i?1i?11010假定两种显像管的使用寿命均服从正态分布,且由生产过程知道它们的方差相等.试求两个总体均值之差?1??2的双侧0.95置信区间.
*11. 在3 091个男生,3 581个女生组成的总体中,随机不放回抽取100人,观察其中男生的成数,要求计算样本中男生成数的SE.
*12. 抽取1 000人的随机样本估计一个大的人口总体拥有私人汽车的人的百分数,样本中有543人是拥有私人汽车的人,(1)求样本中拥有私人汽车的人的百分数的SE;(2)求总体中拥有私人汽车的人百分数的置信水平为95%的置信区间.
习题十一
27
习题十一
1. 在一个假设检验问题中,当检验最终结果是接受H1时,可能犯什么错误; 在一个假设检验问题中,当检验最终结果是拒绝H1时,可能犯什么错误. 2. 某厂生产的化纤纤度服从正态分布N(?,0.04).现测得25根纤维的纤度其样本均值x?1.39,试用p值法检验总体的均值是否为1.40.
*3. 为了研究司机在驾驶车辆过程中使用手机的频率,在全国范围内随机选取了1 165个司机作为一个样本,其中有35个正在使用手机,用p值法检验司机使用手机的真实比率p是否等于0.02??=0.05.
*4. 科学家研究暴露于低氧对昆虫死亡率的影响.在一个实验室里放置成千上万只昆虫,将他们放置于低氧状态4天,结果发现其中31 386只死亡,35只存活.以前的研究表明,暴露于低氧的死亡率为99%,用p值法检验现在的昆虫暴露于低氧的死亡率是否高于99%??=0.1.
5. 某印刷厂旧机器每周开工成本服从正态分布N(100,25).现安装一台新机器,观测到九周平均每周开工成本x?75元,假定标准差不变,试用p值法检验每周开工平均成本是否是100.
6. 设(x1,?,x25)是取自总体N(?,100)的一个样本的观测值,要检验假设
22H0:??0,H1:??0.
试给出显著性水平?检验的拒绝域R.
7. 某纤维的强力服从正态分布N(?,1.19).原设计的平均强力为6,现改进工艺后,某天测得100个强力数据,其样本均值为6.35,总体标准差假定不变,试问均值的提高是否是工艺改进的结果(取??0.05)?
8. 监测站对某条河流的溶解氧(DO)浓度(单位:mg/L)记录了30个数据,并由此算得x?2.52,s?2.05.已知这条河流每日的DO浓度服从N(?,?),试在显著性水平
22??0.05下,检验假设:H0:??2.7,H1:??2.7.
9. 从某厂生产的电子元件中随机地抽取了25件作寿命测试,得数据(单位:h)
25x1,?,x25,并由此算得x?100,?xi2?4.9?105,已知这种电子元件的使用寿命服从
i?1N(?,?2),且出厂标准为90 h以上,试在显著性水平??0.05下,检验该厂生产的电子
元件是否符合出厂标准,即检验假设:H0:??90,H1:??90.
*10. 一位研究某一甲虫的生物学家发现生活在高原上的该种类的一个总体,从中取出n=20个高山甲虫,以考察高山上的该甲虫是否不同于平原上的该甲虫,其中度量之一是翅膀上黑斑的长度(单位:mm).已知平原甲虫黑斑长度服从??3.14,??0.0505的正态
228
工程数学 概率统计简明教程(第二版)
分布,从高山上甲虫样本得到的黑斑长度x?3.23,s?0.