2020年高考数学(理)一轮复习讲练测专题第二章函数与基本初等函数(单元测试)

内容发布更新时间 : 2025/5/24 16:40:10星期一 下面是文章的全部内容请认真阅读。

第二单元单元测试

【满分:100分 时间:90分钟】

一、选择题(本大题共12小题,每小题4分,共48分)

1.(2019·安徽芜湖一中模拟)若函数y=f(x+1)的值域为[-1,1],则函数y=f(3x+2)的值域为( ) A.[-1,1] C.[0,1] 【答案】A

【解析】函数y=f(x+1)的值域为[-1,1],由于函数中的自变量取定义域内的任意数时,函数的值域都为[-1,1],故函数y=f(3x+2)的值域为[-1,1].故选A.

2.(2019·福建双十中学模拟)设函数f(x)=lg(1-x),则函数f[f(x)]的定义域为( ) A.(-9,+∞) C.[-9,+∞) 【答案】B

??1-x>0,【解析】 f[f(x)]=f[lg(1-x)]=lg[1-lg(1-x)],其定义域为?的解集,解得-9<x<1,

?1-lg(1-x)>0?

B.[-1,0] D.[2,8]

B.(-9,1) D.[-9,1)

所以f[f(x)]的定义域为(-9,1).故选B.

3.(2019·浙江镇海中学模拟)已知函数y=log2(ax-1)在(1,2)上单调递增,则实数a的取值范围是( ) A.(0,1] C.[1,+∞) 【答案】C

【解析】要使y=log2(ax-1)在(1,2)上单调递增,则a>0且a-1≥0,∴a≥1.故选C.

4.(2019·河北唐山一中模拟)奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=( )

A.-2 C.0 【答案】D

【解析】由函数f(x+2)为偶函数可得,f(2+x)=f(2-x). 又f(-x)=-f(x),故f(2-x)=-f(x-2),

B.-1 D.1 B.[1,2] D.[2,+∞)

所以f(2+x)=-f(x-2),即f(x+4)=-f(x). 所以f(x+8)=-f(x+4)=f(x), 故该函数是周期为8的周期函数. 又函数f(x)为奇函数,故f(0)=0. 所以f(8)+f(9)=f(0)+f(1)=0+1=1.

5.(2019·江苏启东中学模拟)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )

A.f(-25)<f(11)<f(80) C.f(11)<f(80)<f(-25) 【答案】D

【解析】∵f(x)满足f(x-4)=-f(x),

∴f(x-8)=f(x),∴函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3). 由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1). ∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数, ∴f(x)在区间[-2,2]上是增函数, ∴f(-1)<f(0)<f(1), 即f(-25)<f(80)<f(11).

x??2-1,x≤0,6.(2019·江西高安中学模拟)已知函数f(x)=?若方程f(x)=x+a有且只有两个不相

?f(x-1),x>0,?

B.f(80)<f(11)<f(-25) D.f(-25)<f(80)<f(11)

等的实数根,则实数a的取值范围为( )

A.(-∞,0] C.(-∞,1) 【答案】C

【解析】当x>0时,f(x)=f(x-1),所以f(x)是以1为周期的函数.又当0<x≤1时,x-1≤0,所以f(x)1?x-

=f(x-1)=21x-1=2??2?-1.方程f(x)=x+a的根的个

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi