中介作用于调节作用:原理与应用

内容发布更新时间 : 2025/6/19 6:57:11星期一 下面是文章的全部内容请认真阅读。

RMR, GFI Model Default model Saturated model Independence model

Baseline Comparisons Model Default model Saturated model Independence model RMSEA Model Default model Independence model RMSEA .095 .323 LO 90 .083 .314 HI 90 .108 .332 PCLOSE .000 .000 NFI Delta1 .943 1.000 .000 RFI rho1 .901 .000 IFI Delta2 .950 1.000 .000 TLI rho2 .912 .000 CFI .949 1.000 .000 RMR .017 .000 .187 GFI .947 1.000 .394 AGFI .888 .260 PGFI .448 .323

2.5复杂中介效应的发展 2.5.1类别变量的中介效应检验

通常的中介效应模型,假设自变量X、中介变量M和因变量Y均为连续变量。对于自变量X 为分类或者等级变量的情景,可以通过定义虚拟变量(dummy variable)的方法来处理。基本方法包括:

第一种方法,设置虚拟变量后,使用因果逐步回归法进行处理,基本步骤与连续变量步骤一致。

第二种方法,如果不进行虚拟变量设置,可以使用Hayes等提供的Process或者MEDIATE插件处理,其中,MEDIATE插件也提供了虚拟变量自动处理功能,其结果解释与校正非参数百分位Bootstrap法基本一致(需要在spss中编写语法实现)。 (1)虚拟变量设置

下面从虚拟变量的设置开始,对上述方法进行操作:

为了在模型中能够反映这些因素的影响,并提高模型的精度,需要将它们“量化”,这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些因素的属性类型,构造只取“0”或“1”的人工变量,通常称为虚拟变量(dummyvariables),记为D。如果某个定性变量有m种相互排斥的类型,则模型中只能引入m-1个虚拟变量。否则会陷入所谓的“虚拟变量陷阱”,产生完全共线性。当原变量是二分类变量时,我们只需要设定一个“1”、“0”取值的虚拟变量,并且把取值为“0”的那个类别作为参照项。

两水平分类变量的虚拟变量设置方法: 第一,Spss中转换→编码为不同变量

第二,选择需要转换的变量并命名,点击更改

第三,点击新值和旧值按钮(Old and New Values),将原变量的“1”设为新变量的“1”,将原变量的“2”设为新变量的“0”,点击继续按钮。 第四,点击确定生成虚拟变量。

四水平分类变量的虚拟变量设置方法: 第一,Spss中转换→编码为不同变量

第二,选择需要转换的变量并命名,点击更改

第三,点击新值和旧值按钮(Old and New Values),将原变量的“1”设为新变量的“1”,将原变量的其余取值都设为“0”,点击继续按钮回主菜单、点击确定按钮产生虚拟变量;将原变量的“2”设为新变量的“0”,将原变量的其余取值都设为“0”,点击继续按钮回主菜单、点击确定按钮产生虚拟变量;将原变量的“3”设为新变量的“0”,将原变量的其余取值都设为“0”,点击继续按钮回主菜单、点击确定按钮产生虚拟变量。

虚拟变量设置好后,按照温忠麟等新提出的因果逐步回归法进行中介效应检验(省略)。

(2)PROCESS程序运行步骤

软件具体操作步骤:

下载Bootstrap插件安装在Spss中(http://www.comm.ohio-state.edu/ahayes/) 步骤一、运行SPSS,打开数据文件;

>>灞曞紑鍏ㄦ枃<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi