内容发布更新时间 : 2025/7/4 11:10:09星期一 下面是文章的全部内容请认真阅读。
式,但反之则不然,即不能用下面的公式蕴涵上面的公式。
(二)用自然推理的方法证明下述推理的有效性。 1.①(A∧B)→(A→D∧E),②(A∧B∧C)。所以,D∨E。
证明:⑴ (A∧B)→(A→D∧E) 已知
⑵ A∧B∧C 已知 ⑶ A∧B ⑵,联言推理的分解式 ⑷ A ⑶,联言推理的分解式 ⑸ A→D∧E ⑴、⑶,充分条件推理的肯定前件式 ⑹ D∧E ⑷、⑸,充分条件推理的肯定前件式 ⑺ D ⑹,联言推理的分解式 ⑻ D∨E ⑺,析取附加式
2.①E→F∧﹁G,②F∨G→H,③E。所以,H。
证明:⑴ E→F∧﹁G 已知
⑵ F∨G→H 已知 ⑶ E 已知 ⑷ F∧﹁G ⑴、⑶,充分条件推理的肯定前件式 ⑸ F ⑷,联言推理的分解式 ⑹ F∨G ⑸,析取附加律 ⑺ H ⑵,⑹,充分条件推理的肯定前件式
3.①M→N,②N→O,③ (M→O)→(N→P),④(M→P)→Q。所以,Q。
证明:⑴ M→N 已知
⑵ N→O 已知 ⑶ (M→O)→(N→P) 已知 ⑷ (M→P)→Q 已知 ⑸ M→O ⑴、⑵,条件三段论 ⑹ N→P ⑶、⑸,充分条件推理的肯定前件式 ⑺ M→P ⑴、⑹,条件三段论 ⑻ Q ⑷、⑺,充分条件推理的肯定前件式
4.①A→B,②B→C,③ C→D,④(A→D)→(B→A),⑤﹁A。所以,﹁B。
证明:⑴ A→B 已知
⑵ B→C 已知 ⑶ C→D 已知 ⑷ (A→D)→(B→A) 已知 ⑸ ﹁A 已知 ⑹ A→C ⑴、⑵,条件三段论 ⑺ A→D ⑶、⑹,条件三段论 ⑻ B→A ⑷、⑺,充分条件推理的肯定前件式 ⑼ ﹁B ⑸、⑻,充分条件推理的否定后件式
5.A∨B→(C∨D→E)。所以,A→(C∧D→E)。
证明:⑴ A∨B→(C∨D→E) 已知
⑵ A 假设 ⑶ C∧D 假设 ⑷ A∨B ⑵,析取附加律 ⑸ C∨D→E ⑴、⑷,充分条件推理的肯定前件式
41
⑹ C ⑶,联言推理的分解式 ⑺ C∨D ⑹,析取附加律 ⑻ E ⑸、⑺,充分条件推理的肯定前件式 ⑼ C∧D→E ⑶、⑻,→引入 ⑽ A→(C∧D→E) ⑵、⑼,→引入
6.①A∨B→C∧D,②D∨E→F。所以,A→F。
证明:⑴ A∨B→C∧D 已知
⑵ D∨E→F 已知 ⑶ A 假设 ⑷ A∨B ⑶,析取附加律 ⑸ C∧D ⑴、⑷,充分条件推理的肯定前件式 ⑹ D ⑶,联言推理的分解式 ⑺ D∨E ⑹,析取附加律 ⑻ F ⑵、⑺,充分条件推理的肯定前件式 ⑼ A→F ⑶、⑻,→引入
7.①A∧B→C,②(A→C)→D,③﹁B∨E。所以,B→D∧E
证明:⑴ A∧B→C 已知
⑵ (A→C)→D 已知 ⑶ ﹁B∨E 已知 ⑷ B 假设 ⑸ E ⑶、⑷,选言推理的否定肯定式 ⑹ ﹁(A∧B)∨C ⑴,等值命题 ⑺ ﹁A∨﹁B∨C ⑹,德摩根定律 ⑻ (﹁A∨C)→D ⑵,等值命题 ⑼ (﹁A∨﹁B∨C)→D ⑻,条件附加律 ⑽ D ⑺、⑼,充分条件推理的肯定前件式 ⑾ D∧E ⑸、⑽,联言推理的组合式 ⑿ B→D∧E ⑷、⑾,→引入
8.①A∨(B∧C),②(A→D)∧(D→C)。所以,C。
证明:⑴ A∨(B∧C) 已知
⑵ (A→D)∧(D→C) 已知 ⑶ A→C ⑵,条件三段论 ⑷ A∨(B∧C)→C ⑶,条件附加律 ⑸ C ⑴、⑷,充分条件推理的肯定前件式
第七章 谓词逻辑初步
一、填空题
1.关系词项“包庇”在直接关系推理中表现为(非对称)性,在间接关系