第一章 事件与概率

内容发布更新时间 : 2025/5/23 23:44:03星期一 下面是文章的全部内容请认真阅读。

第一章 随机事件与概率

教学要求

通过本章的教学,使学生达到以下几个方面的基本要求:

1、理解随机现象、样本空间和随机事件的概念,会用随机变量表示随机事件,掌握事件间的关系与运算;

2、理解概率的公理化定义及确定概率的三种方法(频率方法、古典方法与几何方法),掌握概率的基本性质;

3、理解条件概率与独立性的概念,掌握与条件概率有关的三个基本公式(乘法公式、全概率公式与贝叶斯公式);

4、掌握概率的计算的基本方法:

(1) 概率的直接计算:古典概率与几何概率;

(2) 概率的间接推算:利用概率的基本性质、基本公式和事件的独立性,由较简单事件的概率推算较复杂事件的概率.

重点与难点

本章的重点是概率的计算,关键在于会判别概率的各种类型,然后选择相应的公式进行计算;难点是古典概率的计算与全概率公式的运用.

§1.1 随机事件及其运算

一、随机现象

自然界中有两类现象:

一类是“条件完全确定结果”的现象,就是在一定的条件下,只有一个结果出现的现象,这类现象称为确定性现象. 例如,每天早晨太阳从东方升起;水在标准大气压下加热到1000C就沸腾;一个口袋中有十只相同的白球,从中任取一只必为白球.

另一类是“条件不能完全确定结果”现象,就是在一定的条件下,并不总是

1

出现相同结果的现象,这类现象称为随机现象.

例1.1 随机现象的例子

(1) 抛一枚硬币,观察是正面朝上?还是反面朝上? (2) 掷一颗骰子,观察出现的点数; (3) 一天内进入某商场的顾客数; (4) 某种型号电视机的寿命. 随机现象有两个特点: (1) 结果不止一个;

(2) 事先不知道哪一个会出现.

乍看起来,随机现象似乎没有什么规律性可言. 但是,实践告诉我们,随机现象的各种结果会表现出一定的规律性,这种规律性称为统计规律性.例如,若重复抛一枚硬币多次,则可以看到这样的事实:当重复次数n很大时,出现正面的次数nH和出现反面的次数nT很接近,比值nHn(或nTn)会逐渐稳定于0.5,这就是例1.1(1)所述随机现象的统计规律性. 概率论与数理统计就是研究随机现象的统计规律性的一门数学学科。由于随机现象的普遍性,使得概率论与数理统计具有极其广泛的应用性.

二、样本空间

我们把对随机现象所进行的实验与观察统称为试验,若一个试验具有下列三个特点:

(1) 可重复性:在相同的条件下可重复进行;

(2) 确定性:试验结果不止一个,试验的所有结果在试验之前可以确定的; (3) 随机性:每次试验只出现一个结果,但试验前无法预见哪个结果将会发生。

则称该试验为随机试验,简称试验,记为E.

随机试验的每一个不可再分的结果称为样本点或基本结果,用?记之. 试验的所有样本点组成的集合称为样本空间,用?表示.

认识随机试验,首先要能够列出它的样本空间. 例1.2 列出例1.1中随机现象的样本空间: (1) 抛一枚硬币的样本空间:?1??H,T?;

2

(2) 掷一颗骰子的样本空间:?2??1,2,3,4,5,6?; (3) 一天内进入某商场的顾客数的样本空间:?3??0,1,2,3,(4) 电视机寿命的样本空间:?4??t:t?0?.

通常把样本点的个数为有限个或无限可列个的情况归为一类,称为离散样本空间;而把样本点的个数为无限不可列个的情况归为另一类,称为连续样本空间. 三、随机事件

随机试验的某些样本点组成的集合称为随机事件,简称为事件①,常用大写字母A,B,C,表示. 易见,任意事件都是样本空间的子集(或子事件)。

?;

事件又分为基本事件和复合事件,由单个样本点组成的事件称为基本事件,由基本事件复

>>鐏炴洖绱戦崗銊︽瀮<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4 ceshi