内容发布更新时间 : 2025/7/12 11:22:34星期一 下面是文章的全部内容请认真阅读。
解:根据已知条件:x与a共线,可设x??a??{2,?1 ,2},
由a?x??18?a??a??a??18????2?x?{?4, 2,?4}
?{?1 , 3,2},b?{2, ?3 , ?4},c?{?3, 12 , 6},证明三向量a , b , c共面,并用a 2★★★6.设a和 b 表示 c
知识点:向量的混合积
解:根据向量混合积的性质:三个向量宫面的充要条件是它们的混合积为零
i∵a ? b ?j3k2??6i?3k?(a ? b)?c?6?3?3?6?0
?12?3?4∴a , b , c共面 若设c?x1a?x2b?{?3,12,6}?{?x1?2x2, 3x1?3x2, 2x1?4x2},
??x1?2x2??3, 3x1?3x2?12, 2x1?4x2?6?x1?5,x2?1
∴c?5a?b
M0(x0,y0,z0)到一通过点
★★★7.证明点
A(a,b,c)、方向平行于向量s的直线的距离为
d?r?ss,其中r?AM0。
证明:该题类似于习题7-7的11题,把向量s的起点放在A(a,b,c),设此时s的终点坐标为M1,d即为?M0AM1底边
AM1(即s)上的高,根据习题7-7的11题的结论:d?AM0?ss
★★★8.已知向量a , b 非零,且不共线,作c??a ? b,?是实数,证明:c最小的向量 c。
最小的向量 c垂直于a ,
并求当a?{1 , 2,?2},b?{1, ?1 , 1}时,使c知识点:向量的数量积及其性质、一元函数的最值 解:c??a ? b?c?c?(?a ? b)?(?a ? b)?c设
2??2a?2?(a?b)?b222
f(?)??2a?2?(a?b)?b22,则由
f?(?)?2?a?2(a?b)?0
????a?ba2(唯一驻点),∴
c最小的向量 c??a?ba2a?b,
∵ c?a?(?a?ba2a?b)?a??a?b?b?a?0?c?a,
a?b411a?b?{ , ? , } 2333a当a?{1 , 2,?2},b?{1, ?1 , 1}时,使c2最小的向量 c??★★9.将xoy坐标面上的双曲线4x?9y2?36分别绕x轴及y轴旋转一周,求所生成的旋转曲面方
程。
知识点:旋转曲面及其方程
解:当xoy坐标面上的双曲线4x?9y?36绕x轴旋转时旋转曲面方程为:
4x222?9(?y2?z2)2?36?4x2?9y2?9z2?36。
绕y轴旋转时旋转曲面方程为:4(?★★★10.求直线
x2?z2)2?9y2?36?4x2?4z2?9y2?36
L:
x?1yz?1绕z轴旋转所得旋转曲面方程。 ??121知识点:求旋转曲面方程的原理
解:设所求旋转曲面上的动点坐标为(x,y,z),且它是由直线L:
x?1yz?1上的某一点??121(x0,y0,z0)绕z轴旋转得到,所以,(x,y,z)和 (x0,y0,z0)满足:
(1)z22?z0;(2)x0?y0?x2?y2,
将
x0?1y0z0?12222??代入(2)可得:x?y?z?4(z?1) 121?z?2?x2?y2★★11.求曲线L:?在三个坐标面上的投影曲线方程。
22?z?(x?1)?(y?1)?z?2?x2?y2解:(1)方程组?消去z,
22?z?(x?1)?(y?1)?x2?y2?x?y?0可得L在xoy面上的投影曲线方程?
z?0??z?2?x2?y2?z?2?x2?y2(2)方程组?消去x ??22z?(x?1)?(y?1)