内容发布更新时间 : 2025/5/21 5:11:36星期一 下面是文章的全部内容请认真阅读。
对于顶部钢筋不小于30mm及钢筋直径1.5d,对于底部钢筋不小于25mm及钢筋直径d。因为混凝土从上向下浇灌,为了保证混凝土浇灌流畅、密实,要求顶部钢筋净距大些。
4、答:适筋梁从加载至破坏的全过程,梁截面经历混凝土未开裂,带裂缝工作和钢筋塑流三个阶段。混凝土未开裂阶段的极限状态是截面抗裂验算的依据;带裂缝工作阶段是构件变形及裂缝宽度极限状态验算的依据;钢筋塑流阶段的最终状态是截面承载能力极限状态计算的依据。
5、答:正截面最终承载能力破坏的标志是受压区混凝压碎。
6、答:受弯构件正截面可发生“适筋梁”、“超筋梁”、“少筋梁”三种破坏形式。“适筋梁”破坏形式属“塑性破坏”、“超筋梁”和“少筋梁”破坏形式均属“脆性破坏”。严格按规范设计的构件如发生正截面破坏,一般应为“适筋梁”破坏。
7、答:受力钢筋的面积与构件截面有效面积b?h0之比称为配筋率,记为?,
??即:
Asbh0一般来讲,配筋率?增大,正截面的极限承载能力提高,但由于混
凝土受压区高度增加,受边缘混凝土极限压应变的限制,截面的变形能力将下降。
8、答:有四项基本假定:1)平截面假定;2)不计受拉区混凝土抗拉强度;3)混凝土应力——应变关系为抛物线加直线;4)钢筋为理想弹塑性材料。
9、答:目前通过试验不能直接测得受压区混凝土的应力分布。在分析中通过量测受压力混凝土若干纤维层处的应变,再在混凝土轴心受压应力——应变关系中找到各纤维层处的应力而近似确定受压区混凝土的应力分布。
10、答:轴心受压构件截面内各纤维的应变相同,当截面内应力达到极限抗压强度时,整个构件即将被压崩,此时的应变为混凝土的轴压极限应变。受弯构件截面内沿高度各纤维应变不同,即存在应变梯度,愈远离中和轴应变愈大,当受压最外边缘纤维混凝土达到轴压的极限应变时,整个受压区混凝土并未被压崩,而当整个受压区混凝土即将被压崩,即达到构件抗弯极限承载能力时,受压最外边缘纤维混凝土的压应变已超过轴压极限应变。
11、答:截面受压区高度与截面有效高度之比称为相对受压区高度,记为?。若钢筋达到屈服的同时受压混凝土刚好压崩,这种状态的?称为界限相对受压区高度,记为?b,?b是适筋梁与超筋梁相对受压区高度的界限。
12、答:界限状态时的配筋率为最大配筋率,记为?max。其为适筋梁与超筋
Asfy??lfcb?bh0,则?max?梁配筋率的界限值。对于界限状态,
- 13 -
As?f??blcbh0fy。
13、答:当钢筋混凝土梁的极限抗弯承载能力Mu。(按III阶段计算)小于同截面素混凝土梁抗裂抵抗弯矩Mcr时,此钢筋混凝土梁定义为少筋梁。少筋梁与适筋梁的界限配筋率即为最小配筋率?min。
14、答:正截面抗弯承载能力将降低。因截面有效高度h0由单排筋截面的
h?35mm减少为双排筋截面的h?60mm,致使截面的内力臂减小。
15、答:双筋截面梁是不经济的。因此只在下列情况下才采用双筋截面梁:A、当M>Mumax,而截面尺寸受到限制时;B、当构件在同一截面可能承受正负两个方面弯矩作用时;C、构造上在受压区已配有一定量的钢筋。
16、答:双筋截面梁正截面承载能力是没有上限的。因为从基本计算公式来看,无限制地增加受压和相应受拉钢筋的截面面积,就可以无限制地提高梁正截面的承载能力,但这样做是不经济的;同时钢筋过多,排列拥挤,也给施工带来不便;另外,受弯构件还需满足斜截面抗剪承载能力要求。所以,单纯追求梁正截面承载能力的提高是没有意义的,设计中不予以提倡。
17、答:T形截面翼缘中的压应力分布是不均匀的,越远离梁肋越小。为简化计算,假定在距梁肋某一范围内的翼缘全部参与工作,而在这个范围以外部分则完全不参与受力。这个范围即称为翼缘计算宽度或有效翼缘宽度。翼缘计算宽度的大小与翼板厚度、梁的跨度、梁的间距和结构形式等多种因素有关。