内容发布更新时间 : 2025/6/20 12:53:05星期一 下面是文章的全部内容请认真阅读。
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
复变函数与积分变换
(修订版)
主编:马柏林
(复旦大学出版社)
——课后习题答案
1 / 66
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
习题一
1. 用复数的代数形式a+ib表示下列复数
e?iπ/4;3?5i137i?1;(2?i)(4?3i);i?1?i.
①解πe?4i?cos???π???isin??π??22?????2?4???4??i??2???2?2i ?22②解: 3?5i?3?5i??1?7i?16137i?1??1+7i??1?7i???25?25i
③解: ?2?i??4?3i??8?3?4i?6i?5?10i ④解:
13?1?i?35i?31?i=?i?2?2?2i
2.求下列各复数的实部和虚部(z=x+iy)
z?a33z?a(a?); z3;???1?i3??2??;???1?i3??2??;in. ①
:∵设z=x+iy
则z?a??x?iy??a??x?a??iy?????x?a??iy??y??a??x?a??iy?a?x?i?x?a??iy??z? ∴Re?x?a?2?y2?z?a?x2?a22?z?a????y?x?a?2?y2 Im??z?a?2xy?z?a????x?a?2?y2. ②解: 设z=x+iy
∵???????????3z3?x?iy3?x?iy2x?iy?x2?y2?2xyix?iy ∴Rez??x3?3xy2, Im?z3??3x2y?y3.?x?x2?y2??2xy2??222?y?x?y??2xy??i?x3?3xy2??3x2y?y3?i③解: ∵???1?i3?3??1?i3?3??13?2????88?????1?3???1???3?2???3???1?2?????3???3?
??? ?18?8?0i??1
∴Re???1?i3???1?i3??2?????1, Im?????0. ?2?④解:
∵?3??1?3?3???1????1?i3???3?2??3???2???1??3??3?3???i
?12?????88?8?0i??1 2 / 66
,
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
∴Re???1?i3????1, Im???1?i3?????0. ?2???2??⑤解: ∵in?????1?k,n?2kk??. ?1?k????i,n?2k?1 ∴当n?2k时,Re?in????1?k,Im?in??0;
当n?2k?1时,Re?in??0,Im?in????1?k.
3.求下列复数的模和共轭复数
?2?i;?3;(2?i)(3?2i);①解:?2?i?4?1?5.
?2?i??2?i
②解:?3?3
?3??3
③解:?2?i??3?2i??2?i3?2i?5?13?65.
?2?i??3?2i???2?i???3?2i???2?i???3?2i??4?7i
④解:
1?i1?i22?2?2
??1?i??1?i?1??2???2?i2 4、证明:当且仅当z?z时,z才是实数.
证明:若z?z,设z?x?iy,
<