内容发布更新时间 : 2025/7/29 20:03:47星期一 下面是文章的全部内容请认真阅读。
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0), 到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2, 当水面下降1米,通过抛物线在图上的观察可转化为:
当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,
可以通过把y=﹣2代入抛物线解析式得出: ﹣2=﹣0.5x2+2,
解得:x=±22,所以水面宽度增加到42米,比原先的宽度当然是增加了(42﹣4)米,
故答案为:42﹣4.
【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.
三.解答题(共9小题,满分90分) 15.
【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.
【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),
?a?b?3?0∴?, ?9a?3b?3?0解得,
11
?a?1, ??b??2即a的值是1,b的值是﹣2.
【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答. 16.
【分析】(1)把(﹣2,5)、(1,2)分别代入﹣x2+bx+c中得到关于b、c的方程组,然后解方程组即可得到b、c的值;然后计算x=﹣1时的代数式的值即可得到n的值; (2)利用表中数据求解.
??4?2b?c?5?b??2【解答】解:(1)根据表格数据可得?,解得?,
?1?b?c?2c?5??∴﹣x2+bx+c=﹣x2﹣2x+5,
当x=﹣1时,﹣x2﹣2x+5=6,即n=6;
(2)根据表中数据得当0≤x≤2时,y的最大值是5.
【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解. 17.
【分析】(1)根据二次项的系数等于零,一次项的系数不等于零,可得方程组,根据解方程组,可得答案;
(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.
?m2?m?0【解答】解:依题意得?
?m?1?0?m?0或m?1∴? ?m?1∴m=0;
12
(2)依题意得m2﹣m≠0, ∴m≠0且m≠1.
【点评】本题考查了二次函数的定义,二次函数的二次项的系数不等于零是解题关键. 18.
【分析】利用一元二次方程的根与系数的关系求得ab=﹣1,a+b=1,a2+b2=(a+b)2﹣2ab=3.根据题意知,二次函数经过点(a,b),(b,a),(1,1).把它们代入二次函数解析式f(x)=kx2+dx+c(k≠0),列出方程组,通过解方程组可以求得k、d、c的值. 【解答】解:∵方程x2﹣x﹣1=0的两个根为a、b, ∴ab=﹣1,a+b=1,
∴a2+b2=(a+b)2﹣2ab=3. 设f(x)=kx2+dx+c(k≠0), ∵f(a)=b,f(b)=a,f(1)=1,
∴,
由①﹣②,得(a+b)k+d=﹣1,即k+d=﹣1,④
由①+②,得k(a2+b2)+d(a+b)+2c=a+b,即3k+d+2c=1,⑤ 把④