内容发布更新时间 : 2025/8/21 16:26:13星期一 下面是文章的全部内容请认真阅读。
。 内部文件,版权追溯 内部文件,版权追溯 第一章 集合与常用逻辑用语
第一节集__合
1.集合的相关概念
(1)集合元素的三个特性:确定性、无序性、互异性. (2)元素与集合的两种关系:属于,记为∈;不属于,记为?. (3)集合的三种表示方法:列举法、描述法、图示法. (4)五个特定的集合: 集合 符号 2.集合间的基本关系 表示 关系 子集 基本关系 相等 真子集 文字语言 集合A的元素都是集合B的元素 集合A是集合B的子集,且集合B中至少有一个元素不属于A 集合A,B的元素完全相同 不含任何元素的集空集 合.空集是任何集合任意的x,x??,??A ? 符号语言 记法 自然数集 N 正整数集 N或N+ *整数集 Z 有理数集 Q 实数集 R x∈A? x∈B A?B,且存在x0∈B,x0?A A?B, B?A A?B或 B?A AB或 BA A=B A的子集 3.集合的基本运算 表示 文字语言 符号语言 图形语言 记法 1
运算 属于集合A且属于交集 集合B的元素组成的集合 属于集合A或属于并集 集合B的元素组成的集合 全集U中不属于集补集 合A的元素组成的集合 4.集合问题中的几个基本结论 (1)集合A是其本身的子集,即A?A; (2)子集关系的传递性,即A?B,B?C?A?C;
(3)A∪A=A∩A=A,A∪?=A,A∩?=?,?UU=?,?U?=U. (4)A∩B=A?A?B,A∪B=B?A?B. [小题体验]
1.已知集合A={1,2},B={x|0
2.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________. 答案:5
3.设集合A={x|(x+1)(x-2)<0},B={x|0≤x≤3},则A∩B=________. 答案:{x|0≤x<2}
1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件.
2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系. 3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身. 4.运用数轴图示法易忽视端点是实心还是空心.
5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.
[小题纠偏]
2
{x|x∈A,且x∈B} A∩B {x|x∈A,或x∈B} A∪B {x|x∈U,且x?A} ?UA B.2 D.4
1.设全集U=R,集合A={x|7-6x≤0},集合B={x|y=lg(x+2)},则(?UA)∩B等于( )
7??A.?-2,? 6??7??C.?-2,? 6??
???7
解析:选A 依题意得A=?x?x≥
6?????7?
因此(?UA)∩B=?x?-2
?7?B.?,+∞?
?6?
7??D.?-2,-?
6??
?????7
?,?UA=?x?x
??
?;B={x|x+2>0}={x|x>-2},??
2
.
2.已知集合A={x∈N|x-2x≤0},则满足A∪B={0,1,2}的集合B的个数为________. 解析:由A中的不等式解得0≤x≤2,x∈N,即A={0,1