ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2025/5/5 11:57:37ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
proc glm; class grp; model x=grp;
means grp/snk dunnett; means grp; run; quit;
2¡¢£¨·½²î·ÖÎö£©Ñо¿èÛè½¶àÌǶÔÖ¬·¾¸ÎµÄÔ¤·À×÷Ó㬰´Îѱð×÷ÎªÇø×é±êÖ¾£¬Ã¿Ò»Çø×é3Ö»´óÊó£¬Ëæ»ú·ÖÅäµ½Èý¸ö×飺ÉúÀíÑÎË®×é¡¢¾Æ¾«×é¡¢¾Æ¾«+èÛè½¶àÌÇ×飬Èý×é¹àθ5ÖÜ£¬¼ì²â¸ÎÔàÖйÈë׸ÊëÄ£¨GSH£©µÄº¬Á¿£¨mg/gprot£©£¬½á¹û¼û±í2¡£
±í2 Èý×éСÊó¸ÎÔàÖйÈë׸ÊëÄ£¨GSH£©µÄº¬Á¿£¨mg/gprot£©
Çø×é 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
¾Æ¾«×é 30.48 31.25 33.28 34.61 28.35 29.17 27.34 30.58 34.25 27.31 28.09 30.45 33.25 34.04 34.25
LBPÔ¤·À×é 65.08 63.04 67.59 68.58 64.12 66.55 66.89 67.15 68.05 65.48 64.38 65.04 66.84 67.56 67.46
ÉúÀíÑÎË® 79.15 75.46 79.32 75.98 76.55 80.34 84.35 88.14 87.35 72.15 74.61 86.33 94.35 92.05 96.42
ÎÊÌâ1£º°´ÕÕËæ»úÇø×éÉè¼Æ½øÐзÖÎö£¬´¦Àí×é¼ä¡¢Çø×é¼äЧӦÊÇ·ñÓвîÒ죿 ÎÊÌâ2£ººöÂÔÇø×飬°´ÕÕÍêÈ«Ëæ»úÉè¼Æ½øÐзÖÎö£¬´¦Àí×é¼äЧӦÊÇ·ñÓвîÒ죿
ÎÊÌâ3£º¶ÔÉÏÊöÁ½¸ö·½²î·ÖÎö±í½øÐбȽϣ¬ÕÒ³öÏàͬÏîÓ벻ͬÏ¹Û²ì´¦Àí×é¼ä±È½ÏµÄFÖµ±ä»¯£¬»áµÃ³öÔõÑùµÄ½áÂÛ£¿
ÎÊÌâ4£º¸ù¾Ý·ÖÎö½á¹û¶Ô¸ÃÑо¿ÏÂÒ»¸ö½áÂÛ¡£
²Î¿¼³ÌÐò£º data a;
input blk @@;
do grp='¾Æ¾«×é ','LBPÔ¤·À×é','ÉúÀíÑÎË®'; input x@@; output; end; cards;
1 30.48 65.08 79.15 2 31.25 63.04 75.46
¾«Ñ¡
3 33.28 67.59 4 34.61 68.58 5 28.35 64.12 6 29.17 66.55 7 27.34 66.89 8 30.58 67.15 9 34.25 68.05 10 27.31 65.48 11 28.09 64.38 12 30.45 65.04 13 33.25 66.84 14 34.04 67.56 15 34.25 67.46 ;
proc glm; class grp blk; model x= grp blk; means grp/snk; run; quit;
proc glm; class grp; model x= grp; means grp/snk; run; quit;
79.32 75.98 76.55 80.34 84.35 88.14 87.35 72.15 74.61 86.33 94.35 92.05 96.42
3¡¢£¨·½²î·ÖÎö£©Ñо¿ÈËÔ±Ñо¿Ä³ÖÖÎïÖʵ;ÐÔ£¬½«40ֻСÊó·ÖΪÁ½×飬Ð۴Ƹ÷°ë£¬ÊÔÑé×鏸ÓèÑо¿ÎïÖÊ£¬2Сʱºó²â¶¨ÑªÒºÖмîÐÔÁ×ËáøµÄº¬Á¿£¬½á¹ûÈçÏ¡£
±í3 40ֻСÊó¸øÓ費ͬÎïÖʺóѪҺÖмîÐÔÁ×ËáøµÄº¬Á¿
ÐÔ±ð ·Ö×é
¼îÐÔÁ×Ëáø
ÐÛÐÔ ¶ÔÕÕ×é 367.9 408.6 375.6 354.9 421.7 374.5 432.7 401.3 399.4 367.5 ÊÔÑé×é 423.8 446.9 432.5 478.1 437.5 421.6 489.0 432.5 421.0 420.4 ´ÆÐÔ ¶ÔÕÕ×é 378.1 345.2 390.6 399.0 421.1 341.3 322.5 365.4 321.6 401.9 ÊÔÑé×é 420.4 473.2 450.3 405.5 427.4 460.5 420.1 394.4 389.6 420.5 ÎÊÌâ1£ºÑо¿Õß¿¼ÂÇÁ˼¸¸öÓ°ÏìÒòËØ£¿ ÎÊÌâ2£ºÐÔ±ð¶Ô¼îÐÔÁ×ËáøÓÐÎÞÓ°Ï죿 ÎÊÌâ3£º¸ÃÎïÖʶԼîÐÔÁ×ËáøÓÐÎÞÓ°Ï죿
¾«Ñ¡
²Î¿¼³ÌÐò£º data a;
do sex='M','F'; do grp='C','T'; do i= 1 to 10;
input x@@; output; end; end; end; cards;
367.9 408.6 375.6 354.9 423.8 446.9 432.5 478.1 378.1 345.2 390.6 399.0 420.4 473.2 450.3 405.5 ;
proc glm; class sex grp; model x= sex grp; run; quit;
421.7 437.5 421.1 427.4 374.5 421.6 341.3 460.5 432.7 489.0 322.5 420.1 401.3 432.5 365.4 394.4 399.4 421.0 321.6 389.6 367.5 420.4 401.9 420.5
4¡¢£¨»Ø¹é·ÖÎö£©ÒÔÏÂÊÇÖÆ×÷±ê×¼ÇúÏßʱ¶ÔÓ¦µÄŨ¶ÈºÍÎü¹â¶ÈÖµ£¬ÊÔÇó³ö±ê×¼ÇúÏß¡£²¢Çó³öA=1.15ʱµÄŨ¶È¡£
±í4 ²»Í¬Å¨¶È¶ÔÓ¦µÄÎü¹â¶ÈÖµ
Ũ¶È 0.97 1.27 1.57 1.88 2.18
AÖµ 0.3 0.56 0.93 1.35 1.51
²Î¿¼³ÌÐò£º data a; input c a; cards;
0.97 0.30 1.27 0.56 1.57 0.93 1.88 1.35 2.18 1.51 . 1.15 ;
proc reg; model c=a / p; plot c*a; run; quit;
¾«Ñ¡
5¡¢(Ïà¹Ø·ÖÎö¡¢»Ø¹é·ÖÎö)27ÃûÌÇÄò²¡È˵ÄѪÇå×ܵ¨¹Ì´¼¡¢¸ÊÓÍÈýÖ¬¡¢¿Õ¸¹ÒȵºËØ¡¢ÌÇ»¯Ñªºìµ°°×¡¢¿Õ¸¹ÑªÌǵIJâÁ¿ÖµÁÐÓÚ±íÖУ¬ÊÔ·ÖÎöѪÌÇÓëÆäËü¼¸ÏîÖ¸±ê¹ØÏµµÄ¹ØÏµ¡£
±í5 27ÃûÌÇÄò²¡È˵ÄѪÌǼ°ÓйرäÁ¿µÄ²âÁ¿½á¹û
×ܵ¨¹Ì´¼
ÐòºÅi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
£¨mmol/L£©
X1 5.68 3.79 6.02 4.85 4.60 6.05 4.90 7.08 3.85 4.65 4.59 4.29 7.97 6.19 6.13 5.71 6.40 6.06 5.09 6.13 5.78 5.43 6.50 7.98 11.54 5.84 3.84
¸ÊÓÍÈýÖ¬ (mmol/L) X2 1.90 1.64 3.56 1.07 2.32 0.64 8.50 3.00 2.11 0.63 1.97 1.97 1.93 1.18 2.06 1.78 2.40 3.67 1.03 1.71 3.36 1.13 6.21 7.92 10.89 0.92 1.20
ÒȵºËØ (?U/ml) X3 4.53 7.32 6.95 5.88 4.05 1.42 12.60 6.75 16.28 6.59 3.61 6.61 7.57 1.42 10.35 8.53 4.53 12.79 2.53 5.28 2.96 4.31 3.47 3.37 1.20 8.61 6.45
ÌÇ»¯Ñª ºìµ°°×(%)
X4 8.2 6.9 10.8 8.3 7.5 13.6 8.5 11.5 7.9 7.1 8.7 7.8 9.9 6.9 10.5 8.0 10.3 7.1 8.9 9.9 8.0 11.3 12.3 9.8 10.5 6.4 9.6
Ѫ ÌÇ (mmol/L)
Y 11.2 8.8 12.3 11.6 13.4 18.3 11.1 12.1 9.6 8.4 9.3 10.6 8.4 9.6 10.9 10.1 14.8 9.1 10.8 10.2 13.6 14.9 16.0 13.2 20.0 13.3 10.4
ÎÊÌâ1£º¼ÆËã¸÷Ö¸±êÖ®¼äµÄpearsonÏà¹ØÏµÊý¼°spearmanÏà¹ØÏµÊý£» ÎÊÌâ2£ºÒÔѪÌÇΪӦ±äÁ¿YÆäËüΪ×Ô±äÁ¿X£¬½øÐлعé·ÖÎö¡£
¾«Ñ¡
²Î¿¼³ÌÐò£º data a;
input x1 x2 x3 x4 y; cards;
5.68 1.90 4.53 8.2 11.2 3.79 1.64 7.32 6.9 8.8 6.02 3.56 6.95 10.8 12.3 4.85 1.07 5.88 8.3 11.6 4.60 2.32 4.05 7.5 13.4 6.05 0.64 1.42 13.6 18.3 4.90 8.50 12.60 8.5 11.1 7.08 3.00 6.75 11.5 12.1 3.85 2.11 16.28 7.9 9.6 4.65 0.63 6.59 7.1 8.4 4.59 1.97 3.61 8.7 9.3 4.29 1.97 6.61 7.8 10.6 7.97 1.93 7.57 9.9 8.4 6.19 1.18 1.42 6.9 9.6 6.13 2.06 10.35 10.5 10.9 5.71 1.78 8.53 8.0 10.1 6.40 2.40 4.53 10.3 14.8 6.06 3.67 12.79 7.1 9.1 5.09 1.03 2.53 8.9 10.8 6.13 1.71 5.28 9.9 10.2 5.78 3.36 2.96 8.0 13.6 5.43 1.13 4.31 11.3 14.9 6.50 6.21 3.47 12.3 16.0 7.98 7.92 3.37 9.8 13.2 11.54 10.89 1.20 10.5 20.0 5.84 0.92 8.61 6.4 13.3 3.84 1.20 6.45 9.6 10.4 ;
proc corr data=a spearman pearson; run;
proc reg data=a;
model y=x1 x2 x3 x4;
model y=x1 x2 x3 x4/selection=stepwise; run; quit;
¾«Ñ¡