内容发布更新时间 : 2025/6/18 20:29:54星期一 下面是文章的全部内容请认真阅读。
【5】
(1) >> P=[0;0;-5;-6;-i;i];Z=[-1+i;-1-i]; G=zpk(Z,P,8) Zero/pole/gain: 8 (s^2 + 2s + 2) ------------------------- s^2 (s+5) (s+6) (s^2 + 1)
(2) P=[0;0;0;0;0;8.2];Z=[-3.2;-2.6]; H=zpk(Z,P,1,'Ts',0.05,'Variable','q') Zero/pole/gain: (q+3.2) (q+2.6) --------------- q^5 (q-8.2)
Sampling time (seconds): 0.05
【8】
(1)闭环系统的传递函数模型 >> s=tf('s');
G=10/(s+1)^3;
Gpid=0.48*(1+1/(1.814*s)+0.4353*s/(1+0.4353*s)); G1=feedback(Gpid*G,1) Transfer function:
7.58 s^2 + 10.8 s + 4.8 --------------------------------------------------------------
0.7896 s^5 + 4.183 s^4 + 7.811 s^3 + 13.81 s^2 + 12.61 s + 4.8
(2)状态方程的标准型实现 >> G1=ss(G1) a =
x1 x2 x3 x4 x5 x1 -5.297 -2.473 -2.186 -0.9981 -0.7598
x2 4 0 0 0 0 x3 0 2 0 0 0 x4 0 0 2 0 0 x5 0 0 0 0.5 0 b =
u1 x1 2 x2 0 x3 0 x4 0 x5 0
16
c =
x1 x2 x3 x4 x5 y1 0 0 0.6 0.4273 0.3799 d =
u1 y1 0
Continuous-time state-space model.
(3)零极点模型 >> G1=zpk(G1) Zero/pole/gain:
9.6 (s^2 + 1.424s + 0.6332) --------------------------------------------------------
(s+3.591) (s^2 + 1.398s + 0.6254) (s^2 + 0.309s + 2.707)
【11】
>> Ga=feedback(s/(s^2+2)*1/(s+1),(4*s+2)/(s+1)^2); Gb=feedback(1/s^2,50);
G=3*feedback(Gb*Ga,(s^2+2)/(s^3+14)) Transfer fu