ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2026/1/14 18:01:40ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£
ʵÑéËÄ Çó΢·Ö·½³ÌµÄ½â
Ò»¡¢ÎÊÌâ±³¾°ÓëʵÑéÄ¿µÄ
ʵ¼ÊÓ¦ÓÃÎÊÌâͨ¹ýÊýѧ½¨Ä£Ëù¹éÄɶøµÃµ½µÄ·½³Ì£¬¾ø´ó¶àÊý¶¼ÊÇ΢·Ö·½
³Ì£¬ÕæÕýÄܵõ½´úÊý·½³ÌµÄ»ú»áºÜÉÙ£®ÁíÒ»·½Ã棬Äܹ»Çó½âµÄ΢·Ö·½³ÌÒ²ÊÇÊ®·ÖÓÐÏ޵ģ¬ÌرðÊǸ߽׷½³ÌºÍƫ΢·Ö·½³Ì£¨×飩£®Õâ¾ÍÒªÇóÎÒÃDZØÐëÑо¿Î¢·Ö·½³Ì£¨×飩¾«Æ·Îĵµ£¬ÄãÖµµÃÆÚ´ý
µÄ½â·¨£¬¼ÈÒªÑо¿Î¢·Ö·½³Ì£¨×飩µÄ½âÎö½â·¨£¨¾«È·½â£©£¬¸üÒªÑо¿Î¢·Ö·½³Ì£¨×飩µÄÊýÖµ½â·¨£¨½üËÆ½â£©£®
¶Ô΢·Ö·½³Ì£¨×飩µÄ½âÎö½â·¨(¾«È·½â)£¬Matlab ÓÐרÃŵĺ¯Êý¿ÉÒÔÓ㬱¾ÊµÑ齫×÷Ò»¶¨µÄ½éÉÜ£®
±¾ÊµÑ齫Ö÷ÒªÑо¿Î¢·Ö·½³Ì(×é)µÄÊýÖµ½â·¨£¨½üËÆ½â£©£¬Öصã½éÉÜ Euler ÕÛÏß·¨£®
¶þ¡¢Ïà¹Øº¯Êý£¨ÃüÁ¼°¼ò½é
1£®dsolve('equ1','equ2',¡)£ºMatlab Çó΢·Ö·½³ÌµÄ½âÎö½â£®equ1¡¢equ2¡¢¡Îª·½³Ì£¨»òÌõ¼þ£©£®Ð´·½³Ì£¨»òÌõ¼þ£©Ê±Óà Dy ±íʾy ¹ØÓÚ×Ô±äÁ¿µÄÒ»½×µ¼Êý£¬ÓÃÓà D2y ±íʾ y ¹ØÓÚ×Ô±äÁ¿µÄ¶þ½×µ¼Êý£¬ÒÀ´ËÀàÍÆ£®
2£®simplify(s)£º¶Ô±í´ïʽ s ʹÓà maple µÄ»¯¼ò¹æÔò½øÐл¯¼ò£® ÀýÈ磺 syms x
simplify(sin(x)^2 + cos(x)^2) ans=1
3£®[r,how]=simple(s)£ºÓÉÓÚ Matlab ÌṩÁ˶àÖÖ»¯¼ò¹æÔò£¬simple ÃüÁî¾ÍÊǶԱí´ïʽ s Óø÷ÖÖ¹æÔò½øÐл¯¼ò£¬È»ºóÓà r ·µ»Ø×î¼òÐÎʽ£¬how ·µ»ØÐγÉÕâÖÖÐÎʽËùÓõĹæÔò£®
ÀýÈ磺 syms x
[r,how]=simple(cos(x)^2-sin(x)^2) r = cos(2*x) how = combine
4£®[T,Y] = solver(odefun,tspan,y0) Çó΢·Ö·½³ÌµÄÊýÖµ½â£® ˵Ã÷£º
(1) ÆäÖÐµÄ solverΪÃüÁî ode45¡¢ode23¡¢ode113¡¢ode15s¡¢ode23s¡¢ode23t¡¢ode23tb Ö®Ò»£®
?dy??f(t,y)(2) odefun ÊÇÏÔʽ³£Î¢·Ö·½³Ì£º?dt
??y(t0)?y0(3) ÔÚ»ý·ÖÇø¼ä tspan=[t0,tf]ÉÏ£¬´Ót0µ½tf£¬ÓóõʼÌõ¼þy0Çó½â£®
(4) Òª»ñµÃÎÊÌâÔÚÆäËûÖ¸¶¨Ê±¼äµãt0,t1,t2,?ÉϵĽ⣬ÔòÁî tspan=
[t0,t1,t2,?,tf]£¨ÒªÇóÊǵ¥µ÷µÄ£©£®
(5) ÒòΪûÓÐÒ»ÖÖËã·¨¿ÉÒÔÓÐЧµØ½â¾öËùÓÐµÄ ODE ÎÊÌ⣬Ϊ´Ë£¬Matlab ÌṩÁ˶àÖÖÇó½âÆ÷ Solver£¬¶ÔÓÚ²»Í¬µÄODE ÎÊÌ⣬²ÉÓò»Í¬µÄSolver£®
Çó½âÆ÷ ODEÀàÐÍ ÌØµã ˵Ã÷ Solver ode45 ·Ç¸ÕÐÔ µ¥²½Ëã·¨£»4¡¢5½×Runge-Kutta´ó²¿·Ö³¡ºÏµÄÊ×Ñ¡Ëã·¨ ·½³Ì£»ÀۼƽضÏÎó²î´ï(?x)3 µ¥²½Ëã·¨£»2¡¢3½×Runge-KuttaʹÓÃÓÚ¾«¶È½ÏµÍµÄÇéÐÎ ·½³Ì£»ÀۼƽضÏÎó²î´ï(?x)3 ¶à²½·¨£»AdamsËã·¨£»¸ßµÍ¾«¼ÆËãʱ¼ä±È ode45 ¶Ì ¶È¾ù¿Éµ½10?3~10?6 ode23t ode15s ode23s ÊʶȸÕÐÔ ¸ÕÐÔ ¸ÕÐÔ ²ÉÓÃÌÝÐÎËã·¨ ¶à²½·¨£»Gear's·´ÏòÊýֵ΢·Ö£»¾«¶ÈÖÐµÈ µ¥²½·¨£»2½× Rosebrock Ëã·¨£»µÍ¾«¶È ÌÝÐÎËã·¨£»µÍ¾«¶È ÊʶȸÕÐÔÇéÐÎ Èô ode45 ʧЧʱ£¬¿É³¢ÊÔʹÓà µ±¾«¶È½ÏµÍʱ£¬¼ÆËãʱ¼ä±È ode15s ¶Ì µ±¾«¶È½ÏµÍʱ£¬¼ÆËãʱ¼ä±È ode15s ¶Ì ode23 ·Ç¸ÕÐÔ ode113 ·Ç¸ÕÐÔ ode23tb ¸ÕÐÔ (6) ÒªÌØ±ðµÄÊÇ£ºode23¡¢ode45 ÊǼ«Æä³£ÓõÄÓÃÀ´Çó½â·Ç¸ÕÐԵıê×¼ÐÎʽµÄÒ»½×³£Î¢·Ö·½³Ì(×é)µÄ³õÖµÎÊÌâµÄ½âµÄ Matlab µÄ³£ÓóÌÐò£¬ÆäÖУº
ode23 ²ÉÓÃÁú¸ñ-¿âËþ2 ½×Ëã·¨£¬ÓÃ3 ½×¹«Ê½×÷Îó²î¹À¼ÆÀ´µ÷½Ú²½³¤£¬¾ßÓе͵ȵľ«¶È£®
ode45 Ôò²ÉÓÃÁú¸ñ-¿âËþ4 ½×Ëã·¨£¬ÓÃ5 ½×¹«Ê½×÷Îó²î¹À¼ÆÀ´µ÷½Ú²½³¤£¬¾ßÓÐÖеȵľ«¶È£®
5£®ezplot(x,y,[tmin,tmax])£º·ûºÅº¯ÊýµÄ×÷ͼÃüÁx,y Ϊ¹ØÓÚ²ÎÊýt µÄ·ûºÅº¯Êý£¬[tmin,tmax] Ϊ t µÄȡֵ·¶Î§£®
6£®inline()£º½¨Á¢Ò»¸öÄÚÁªº¯Êý£®¸ñʽ£ºinline('expr', 'var1', 'var2',¡) £¬×¢ÒâÀ¨ºÅÀïµÄ±í´ïʽҪ¼ÓÒýºÅ£®
Àý£ºQ = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)
Èý¡¢ÊµÑéÄÚÈÝ
1. ¼¸¸ö¿ÉÒÔÖ±½ÓÓà Matlab Çó΢·Ö·½³Ì¾«È·½âµÄÀý×Ó£º
2dyÀý1£ºÇó½â΢·Ö·½³Ì?2xy?xe?x£¬²¢¼ÓÒÔÑéÖ¤£®
dxÇó½â±¾ÎÊÌâµÄMatlab ³ÌÐòΪ£º
syms x y %line1 y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2 diff(y,x)+2*x*y-x*exp(-x^2) %line3 simplify(diff(y,x)+2*x*y-x*exp(-x^2)) %line4 ˵Ã÷£º
(1) ÐÐline1ÊÇÓÃÃüÁÒåx,yΪ·ûºÅ±äÁ¿£®ÕâÀï¿ÉÒÔ²»Ð´£¬µ«ÎªÈ·±£ÕýÈ·ÐÔ£¬½¨ÒéдÉÏ£»
(2) ÐÐline2ÊÇÓÃÃüÁîÇó³öµÄ΢·Ö·½³ÌµÄ½â£º
1/2*exp(-x^2)*x^2+exp(-x^2)*C1
(3) ÐÐline3ʹÓÃËùÇóµÃµÄ½â£®ÕâÀïÊǽ«½â´úÈëÔ΢·Ö·½³Ì£¬½á¹ûÓ¦¸ÃΪ0£¬µ«ÕâÀï¸ø³ö£º
-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)
(4) ÐÐline4 Óà simplify() º¯Êý¶ÔÉÏʽ½øÐл¯¼ò£¬½á¹ûΪ 0£¬ ±íÃ÷y?y(x)µÄÈ·ÊÇ΢·Ö·½³ÌµÄ½â£®
Àý2£ºÇó΢·Ö·½³Ìxy'?y?ex?0ÔÚ³õʼÌõ¼þy(1)?2eϵÄÌØ½â£¬²¢»³ö½âº¯ÊýµÄͼÐΣ®
Çó½â±¾ÎÊÌâµÄ Matlab ³ÌÐòΪ£º syms x y
y=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x')
ezplot(y)
e?ex΢·Ö·½³ÌµÄÌØ½âΪ£ºy=1/x*exp(x)+1/x* exp (1) (Matlab¸ñʽ)£¬¼´y?£¬
x½âº¯ÊýµÄͼÐÎÈçͼ 1£º