内容发布更新时间 : 2025/11/1 0:14:18星期一 下面是文章的全部内容请认真阅读。
【解】P(|X?10.05|?0.12)?P??X?10.050.12?? ?0.06??0.06 2                          ?1??(2)??(?2)?2[1??(2)]?0.045623.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少? 【解】P(120?X?200)?P?40?120?160X?160200?160??40???40??40?           故     ???????2??1?0.8???31.25 ??????????1.29????????????A?Be?xt,x?0,(??0),   (1) 求常数A,B;  (2) 求P{X≤2},P{X>3}; (3) 求分布密度f(x). 24.设随机变量X分布函数为  F(x)=?0,x?0.?limF(x)?1??A?1?x???【解】(1)由?得?   (2) P(XlimF(x)?limF(x)?B??1?x?0??x?0???e??x,x?0(3)  f(x)?F?(x)?? 0,x?0??2)?F(2)?1?e?2?    P(X?3)?1?F(3)?1?(1?e?3?)?e?3? ?x,?25.设随机变量X的概率密度为   f(x)=?2?x,?0,?【解】当x<0时F(x)=0       当0≤x<1时F(x)?0?x?1,1?x?2,     求X的分布函数F(x),并画出f(x)及F(x). 其他.?x??f(t)dt??f(t)dt????0x0xx2f(t)dt??tdt?        当1≤x<2时F(x)??f(t)dt 0??2x 21 ??0??1f(t)dt??f(t)dt??f(t)dt01x11x??tdt??(2?t)dt01x23??2x??222x2???2x?12 当x≥2时F(x)??x??x?0?0,?2?x,0?x?1?2 f(t)dt?1                         故        F(x)??2??x?2x?1,1?x?2?2?x?2?1,?bx,0?x?1,?1|x|26.设随机变量X的密度函数为   (1) f(x)=ae,λ>0;     (2)   f(x)=?2,1?x?2,   试确定常数a,b,并求其分布函数F(x). x??0,其他.???2a???|x|??x【解】(1) 由?f(x)dx?1知1??aedx?2a?edx?     故     a? ??0??2?????xe,x?0??2f(x)??    当??e?xx?0??2x即密度函数为    x≤0时F(x)????f(x)dx??1e?xdx?e?x  当??22x?x>0时F(x)??x???1??x1?e,x?0?0?x?1?2 f(x)dx??e?xdx??e??xdx?1?e??x     故其分布函数    F(x)????2022?1e?x,x?0??222  (2) 由1?????0?x?1?x,?1121b1?f(x)dx??bxdx??2dx??            得     b=1        即X的密度函数为          f(x)??2,1?x?2 01x22?x其他??0,当x≤0时F(x)=0        当0