c语言经典算法设计方法 下载本文

内容发布更新时间 : 2025/9/22 9:46:28星期一 下面是文章的全部内容请认真阅读。

(1)a[i+1]a[i],后一个数字比前一个大; (2)a[i]-i=n-r+1。

按回溯法的思想,找解过程可以叙述如下:

首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下:

【程序】

#define MAXN 100 int a[MAXN]; void comb(int m,int r) {

int i,j; i=0; a[i]=1; do {

if(a[i]-i=m-r+1) {

if(i==r-1) {

for(j=0;j r;j++) printf(\; printf(\; } a[i]++; continue; } else { if(i==0) return; a[--i]++; }

}while(1) } main() {

comb(5,3); } 4.贪婪法

贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。

例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。

【问题】装箱问题

问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i

若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先

对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:

{

输入箱子的容积; 输入物品种数n;

按体积从大到小顺序,输入各物品的体积; 预置已用箱子链为空;

预置已用箱子计数器box_count为0; for(i=0;i n;i++) {

从已用的第一只箱子开始顺序寻找能放入物品i的箱子j; if(已用箱子都不能再放物品i) {

另用一个箱子,并将物品i放入该箱子; box_count++; } else

将物品i放入箱子j; } }