H-S¹âÁ÷Ëã·¨¼°·ÂÕæ×ܽá ÏÂÔØ±¾ÎÄ

ÄÚÈÝ·¢²¼¸üÐÂʱ¼ä : 2026/1/24 22:28:47ÐÇÆÚÒ» ÏÂÃæÊÇÎÄÕµÄÈ«²¿ÄÚÈÝÇëÈÏÕæÔĶÁ¡£

H-S¹âÁ÷Ëã·¨¼°·ÂÕæ×ܽá

Ò»¡¢¹âÁ÷µÄ¸ÅÄî

¶þάͼÏñÊÇÈýάʵ¾°ÔÚ³ÉÏñÃæµÄͶӰ£¬·´Ó³ÁËÈýάʵ¾°ÖÐÎïÌåµÄλÖõÈÐÅÏ¢¡£

¼ÙÉèPoÊÇÈýάʵ¾°ÖеÄÒ»µã£¬PiÊÇPoÔÚ³ÉÏñÃæÉϵÄͶӰ£¬PoµÄÔ˶¯·´Ó³ÔÚ³ÉÏñÃæÖоÍÊÇPiµÄÔ˶¯£¬¼ÙÉèPoÔÚ¦Ätʱ¼äÄÚÔ˶¯Á˦Äsµ½Po¡¯,PiÔòÔ˶¯Á˦Äs¡¯µ½Pi£¬PiÔ˶¯µÄËÙ¶ÈΪ

?s'¡£ÈçÏÂͼËùʾ£º ?tPo¡¯ ³ÉÏñÃæPo Pi Pi¡¯ ͼ1 PoµÄÔ˶¯ÔÚ³ÉÏñÃæÉÏ·´Ó³ÎªPiµÄÔ˶¯

PiµÄÔ˶¯ËÙ¶È

¾°ÖÐÎïÌåµÄλÖá¢Ô˶¯µÈÐÅÏ¢¡£

?s'¾ÍÊÇPiµÄ¹âÁ÷¡£Óɴ˵óö£¬¹âÁ÷¾ÍÊÇÈýάʵ¾°ÔÚ³ÉÏñÃæ?tÉϵÄͶӰµÄÔ˶¯ËÙ¶È¡£Èýάʵ¾°ÖеÄijһµãÔÚ³ÉÏñÃæÉϵÄͶӰµÄÔ˶¯ËÙ¶ÈÐγɵã¹âÁ÷£¬ËùÓеãÔÚ³ÉÏñÃæÉϵÄͶӰµÄÔ˶¯ËÙ¶ÈÔòÐγɹâÁ÷³¡¡£¹âÁ÷³¡·´Ó³ÁËÈýάʵ

¹âÕյı仯±ØÈ»ÒýÆð¹âÁ÷µÄ±ä»¯£¬ÓÐЩÔ˶¯²»²úÉú¹âÁ÷£¬Èç¹âÕÕ²»±äʱ£¬¾ùÔÈÁÁ¶ÈµÄÇòÌåÈÆÖÐÐÄÖá×ÔתµÄÔ˶¯¡£Òò´ËÎÒÃÇÔÚÑо¿Êµ¼ÊÎÊÌâʱ³£³£¼ÙÉè¹âÕÕÁÁ¶È²»±ä¡£

¶þ¡¢¹âÁ÷µÄH-SËã·¨

1¡¢¹âÁ÷»ù±¾Ô¼Êø·½³Ì

¼Ù¶¨£º1¡¢Í¼ÏñµÄ»Ò¶ÈʼÖÕ²»±ä£¬2¡¢¹âÁ÷ÔÚÕû¸öͼÏñÖÐÂú×ãÒ»¶¨µÄÔ¼ÊøÌõ¼þ£¬

1

¼´È«¾ÖÐÔÔ¼Êø£¬3¹âÁ÷ÔÚÕû¸öͼÏñÖоùÔȱ仯£¬ ÎÞÖØµþ£¬¼´Æ½»¬ÐÔÔ¼Êø¡£

ÉèI£¨x£¬y£¬t£©ÊÇͼÏñÉϵ㣨x£¬y£©Ä³Ò»Ê±¿ÌtµÄÁÁ¶È£¬u£¨x£¬y£©ºÍv£¨x£¬y£©·Ö±ðÊǵ㣨x£¬y£©ÔÚx·½ÏòºÍy·½ÏòÉϵĹâÁ÷·ÖÁ¿£¬µã£¨x£¬y£©ÔÚt+¦Ätʱ¼äÄÚÔ˶¯µ½£¨x+¦Äx£¬y+¦Äy£©£¬ÆäÖУ¬¦Äx=u*¦Ät£¬¦Äy=v*¦Ät¡£

ÓÉÓÚÁÁ¶È²»±ä£¬ËùÒÔÓÐ

I£¨x+¦Äx£¬y+¦Äy£¬t+¦Ät£©=I£¨x£¬y£¬t£© ÓÃÌ©ÀÕ¼¶ÊýÕ¹¿ªµÃ

I(x,y,t)??I?I?Idx?dy?dt???I(x,y,t) ?x?y?tÆäÖЦÅÊǹØÓÚ¦Äx¡¢¦Äy¡¢¦ÄtµÄ¶þ½×ÒÔÉϵÄÏ¿ÉÒÔºöÂÔ²»¼Æ Á½±ßͬ³ýÒÔ¦ÄtµÃ

?Idx?IdydI???0 ?xdt?ydtdtIx?Éè

?I?I?IdxdyIy?It?u?v??y£¬?x£¬?t£¬dt£¬dt£¬ÔòÓÐ

¹âÁ÷»ù±¾Ô¼Êø·½³Ì

Ixu?Iyv?It?0

2¡¢H-SÌá³öµÄ¹âÁ÷Ëã·¨µü´ú·½³Ì µü´ú·½³Ì

u(k?1)?u(k)?IxIxu(k)?Iyv(k)?It??I?I22x2y£¬v(k?1)?v(k)?IyIxu(k)?Iyv(k)?It??I?I22x2y

ÆäÖУ¬kÊǵü´ú´ÎÊý£¬ uºÍvÊǹâÁ÷¾Ö²¿Æ½¾ùÖµ£¬?ÎªÈ¨ÖØÏµÊý¡£ Èý¡¢H-S¹âÁ÷Ëã·¨ÔÚmatlABÖеķÂÕæ

1¡¢ÀûÓÃimread£¨£©¶ÁÈ¡ÓÃÀ´¼ÆËã¹âÁ÷µÄÁ½·ùͼÏñim1ºÍim2 £» 2¡¢ÀûÓú¯Êýrgb2gray£¨£©½«Á½·ùͼÏñת»¯Îª»Ò¶ÈÖµ²¢´æÈëim1¡¢im2£» 3¡¢ÀûÓù¹Ô캯ÊýsmoothImg£¨£©¶Ôim1¡¢im2½øÐÐÆ½»¬ÐÔ´¦Àí£¬¹«Ê½ÈçÏ£º

G?12??e2???1,x?(?,),??2(3?)2??22£¬ÆäÖÐ

?x2Im1=Conv2£¨conv2(im1,G,)£¬G£©£¬Im2=Conv2£¨conv2(im2,G,)£¬G£©£¬conv2£¨£©ÎªÇó¾í»ýº¯Êý

2

4¡¢ÉèÖÃu¡¢vµÄ³õʼֵ£¬¶¼È¡0£»

5¡¢ÀûÓù¹Ô캯ÊýcomputeDerivatives£¨£©ÇóIx¡¢IyºÍIt£¬¹«Ê½ÈçÏ£º Ix = conv2(im1,0.25* [-1 1; -1 1]) + conv2(im2, 0.25*[-1 1; -1 1]) Iy = conv2(im1, 0.25*[-1 -1; 1 1]) + conv2(im2, 0.25*[-1 -1; 1 1]) It = conv2(im1, 0.25*ones(2)) + conv2(im2, -0.25*ones(2)) 6¡¢ÀûÓþí»ýÇóuºÍv£¬¹«Ê½ÈçÏ£º uAvg=conv2(u,kernel_1) vAvg=conv2(v,kernel_1)

kernel_1= [1/12 1/6 1/12;1/6 0 1/6;1/12 1/6 1/12] 7¡¢ÀûÓÃH-Sµü´ú¹«Ê½Çóu¡¢v

??u(k?1)?u(k)?Ix¦Ë=1

Ixu(k)?Iyv(k)?It??I?I22x2yv(k?1)?v(k)?Iy£¬

Ixu(k)?Iyv(k)?It2?2?Ix2?Iy£¬k=100£¬

8¡¢ÀûÓÃquiver£¨£©»æÖƹâÁ÷ͼ¡£

3