内容发布更新时间 : 2024/11/1 7:00:32星期一 下面是文章的全部内容请认真阅读。
数学精品复习资料
(2013?遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.
1 2 3 4 A.B. C. D. 考点: 角平分线的性质;线段垂直平分线的性质;作图—基本作图. 分析: ①根据作图的过程可以判定AD是∠BAC的角平分线; ②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数; ③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上; ④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比. 解答: 解:①根据作图的过程可知,AD是∠BAC的平分线. 故①正确; ②如图,∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°. 又∵AD是∠BAC的平分线, ∴∠1=∠2=∠CAB=30°, ∴∠3=90°﹣∠2=60°,即∠ADC=60°. 故②正确; ③∵∠1=∠B=30°, ∴AD=BD, ∴点D在AB的中垂线上. 故③正确; ④∵如图,在直角△ACD中,∠2=30°, ∴CD=AD, ∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD. ∴S△ABC=AC?BC=AC?AD=AC?AD, ∴S△DAC:S△ABC=AC?AD: AC?AD=1:3. 故④正确. 综上所述,正确的结论是:①②③④,共有4个. 故选D. 点评: 本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质. (2013?乐山) 如图9,已知线段AB. (1)用尺规作图的方法作出线段AB 的垂直平分线求写出作法);
l (保留作图痕迹,不要
(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方).连结AM、AN、BM、BN.求证:∠MAN=∠MBN.
(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)
考点:作图—复杂作图. 分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.
解答:解:如图所示:.
点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.
(2013?白银)两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
考点: 作图—应用与设计作图. 分析: 仔细分析题意,寻求问题的解决方案. 到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C. 由于两条公路所夹角的角平分线有两条,因此点C有2个. 解答: 解:(1)作出线段AB的垂直平分线; (2)作出角的平分线(2条); 它们的交点即为所求作的点C(2个). 点评: 本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C有2个,注意避免漏解. (2013?青岛)已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点 求作:点E,使直线DE∥AB,且点E到B、D两点的距离相等 (在题目的原图中完成作图)